Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F123401
Quaternion.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Award Token
Size
16 KB
Referenced Files
None
Subscribers
None
Quaternion.cpp
View Options
#include
<echo/Maths/Quaternion.h>
#include
<echo/Maths/Matrix3.h>
#include
<echo/Maths/Vector3.h>
#include
<echo/Maths/Matrix4.h>
namespace
Echo
{
const
f32
Quaternion
::
ms_fEpsilon
=
1e-03
f
;
const
Quaternion
Quaternion
::
ZERO
(
0.0f
,
0.0f
,
0.0f
,
0.0f
);
const
Quaternion
Quaternion
::
IDENTITY
(
0.0f
,
0.0f
,
0.0f
,
1.0f
);
//-----------------------------------------------------------------------
void
Quaternion
::
FromRotationMatrix
(
const
Matrix3
&
kRot
)
{
// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
// article "Quaternion Calculus and Fast Animation".
f32
fTrace
=
kRot
[
0
][
0
]
+
kRot
[
1
][
1
]
+
kRot
[
2
][
2
];
f32
fRoot
;
if
(
fTrace
>
0.0
)
{
// |w| > 1/2, may as well choose w > 1/2
fRoot
=
Maths
::
Sqrt
(
fTrace
+
1.0f
);
// 2w
w
=
0.5f
*
fRoot
;
fRoot
=
0.5f
/
fRoot
;
// 1/(4w)
x
=
(
kRot
[
2
][
1
]
-
kRot
[
1
][
2
])
*
fRoot
;
y
=
(
kRot
[
0
][
2
]
-
kRot
[
2
][
0
])
*
fRoot
;
z
=
(
kRot
[
1
][
0
]
-
kRot
[
0
][
1
])
*
fRoot
;
}
else
{
// |w| <= 1/2
static
size_t
s_iNext
[
3
]
=
{
1
,
2
,
0
};
size_t
i
=
0
;
if
(
kRot
[
1
][
1
]
>
kRot
[
0
][
0
]
)
i
=
1
;
if
(
kRot
[
2
][
2
]
>
kRot
[
i
][
i
]
)
i
=
2
;
size_t
j
=
s_iNext
[
i
];
size_t
k
=
s_iNext
[
j
];
fRoot
=
Maths
::
Sqrt
(
kRot
[
i
][
i
]
-
kRot
[
j
][
j
]
-
kRot
[
k
][
k
]
+
1.0f
);
f32
*
apkQuat
[
3
]
=
{
&
x
,
&
y
,
&
z
};
*
apkQuat
[
i
]
=
0.5f
*
fRoot
;
fRoot
=
0.5f
/
fRoot
;
w
=
(
kRot
[
k
][
j
]
-
kRot
[
j
][
k
])
*
fRoot
;
*
apkQuat
[
j
]
=
(
kRot
[
j
][
i
]
+
kRot
[
i
][
j
])
*
fRoot
;
*
apkQuat
[
k
]
=
(
kRot
[
k
][
i
]
+
kRot
[
i
][
k
])
*
fRoot
;
}
}
//-----------------------------------------------------------------------
void
Quaternion
::
ToRotationMatrix
(
Matrix3
&
kRot
)
const
{
f32
fTx
=
x
+
x
;
f32
fTy
=
y
+
y
;
f32
fTz
=
z
+
z
;
f32
fTwx
=
fTx
*
w
;
f32
fTwy
=
fTy
*
w
;
f32
fTwz
=
fTz
*
w
;
f32
fTxx
=
fTx
*
x
;
f32
fTxy
=
fTy
*
x
;
f32
fTxz
=
fTz
*
x
;
f32
fTyy
=
fTy
*
y
;
f32
fTyz
=
fTz
*
y
;
f32
fTzz
=
fTz
*
z
;
kRot
[
0
][
0
]
=
1.0f
-
(
fTyy
+
fTzz
);
kRot
[
0
][
1
]
=
fTxy
-
fTwz
;
kRot
[
0
][
2
]
=
fTxz
+
fTwy
;
kRot
[
1
][
0
]
=
fTxy
+
fTwz
;
kRot
[
1
][
1
]
=
1.0f
-
(
fTxx
+
fTzz
);
kRot
[
1
][
2
]
=
fTyz
-
fTwx
;
kRot
[
2
][
0
]
=
fTxz
-
fTwy
;
kRot
[
2
][
1
]
=
fTyz
+
fTwx
;
kRot
[
2
][
2
]
=
1.0f
-
(
fTxx
+
fTyy
);
}
//-----------------------------------------------------------------------
void
Quaternion
::
FromAngleAxis
(
const
Radian
&
rfAngle
,
const
Vector3
&
rkAxis
)
{
// assert: axis[] is unit length
//
// The quaternion representing the rotation is
// q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)
Radian
fHalfAngle
(
0.5
*
rfAngle
);
f32
fSin
=
Maths
::
Sin
(
fHalfAngle
);
w
=
Maths
::
Cos
(
fHalfAngle
);
x
=
fSin
*
rkAxis
.
x
;
y
=
fSin
*
rkAxis
.
y
;
z
=
fSin
*
rkAxis
.
z
;
}
//-----------------------------------------------------------------------
void
Quaternion
::
ToAngleAxis
(
Radian
&
rfAngle
,
Vector3
&
rkAxis
)
const
{
// The quaternion representing the rotation is
// q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)
f32
fSqrLength
=
x
*
x
+
y
*
y
+
z
*
z
;
if
(
fSqrLength
>
0.0
)
{
rfAngle
=
2.0
*
Maths
::
ACos
(
w
);
f32
fInvLength
=
Maths
::
InvSqrt
(
fSqrLength
);
rkAxis
.
x
=
x
*
fInvLength
;
rkAxis
.
y
=
y
*
fInvLength
;
rkAxis
.
z
=
z
*
fInvLength
;
}
else
{
// angle is 0 (mod 2*pi), so any axis will do
rfAngle
=
f32
(
0.0
);
rkAxis
.
x
=
1.0
;
rkAxis
.
y
=
0.0
;
rkAxis
.
z
=
0.0
;
}
}
//-----------------------------------------------------------------------
void
Quaternion
::
FromAxes
(
const
Vector3
*
akAxis
)
{
Matrix3
kRot
;
for
(
size_t
iCol
=
0
;
iCol
<
3
;
iCol
++
)
{
kRot
[
0
][
iCol
]
=
akAxis
[
iCol
].
x
;
kRot
[
1
][
iCol
]
=
akAxis
[
iCol
].
y
;
kRot
[
2
][
iCol
]
=
akAxis
[
iCol
].
z
;
}
FromRotationMatrix
(
kRot
);
}
//-----------------------------------------------------------------------
void
Quaternion
::
FromAxes
(
const
Vector3
&
xaxis
,
const
Vector3
&
yaxis
,
const
Vector3
&
zaxis
)
{
Matrix3
kRot
;
kRot
[
0
][
0
]
=
xaxis
.
x
;
kRot
[
1
][
0
]
=
xaxis
.
y
;
kRot
[
2
][
0
]
=
xaxis
.
z
;
kRot
[
0
][
1
]
=
yaxis
.
x
;
kRot
[
1
][
1
]
=
yaxis
.
y
;
kRot
[
2
][
1
]
=
yaxis
.
z
;
kRot
[
0
][
2
]
=
zaxis
.
x
;
kRot
[
1
][
2
]
=
zaxis
.
y
;
kRot
[
2
][
2
]
=
zaxis
.
z
;
FromRotationMatrix
(
kRot
);
}
//-----------------------------------------------------------------------
void
Quaternion
::
ToAxes
(
Vector3
*
akAxis
)
const
{
Matrix3
kRot
;
ToRotationMatrix
(
kRot
);
for
(
size_t
iCol
=
0
;
iCol
<
3
;
iCol
++
)
{
akAxis
[
iCol
].
x
=
kRot
[
0
][
iCol
];
akAxis
[
iCol
].
y
=
kRot
[
1
][
iCol
];
akAxis
[
iCol
].
z
=
kRot
[
2
][
iCol
];
}
}
//-----------------------------------------------------------------------
Vector3
Quaternion
::
XAxis
(
void
)
const
{
//f32 fTx = 2.0*x;
f32
fTy
=
2.0f
*
y
;
f32
fTz
=
2.0f
*
z
;
f32
fTwy
=
fTy
*
w
;
f32
fTwz
=
fTz
*
w
;
f32
fTxy
=
fTy
*
x
;
f32
fTxz
=
fTz
*
x
;
f32
fTyy
=
fTy
*
y
;
f32
fTzz
=
fTz
*
z
;
return
Vector3
(
1.0f
-
(
fTyy
+
fTzz
),
fTxy
+
fTwz
,
fTxz
-
fTwy
);
}
//-----------------------------------------------------------------------
Vector3
Quaternion
::
YAxis
(
void
)
const
{
f32
fTx
=
2.0f
*
x
;
f32
fTy
=
2.0f
*
y
;
f32
fTz
=
2.0f
*
z
;
f32
fTwx
=
fTx
*
w
;
f32
fTwz
=
fTz
*
w
;
f32
fTxx
=
fTx
*
x
;
f32
fTxy
=
fTy
*
x
;
f32
fTyz
=
fTz
*
y
;
f32
fTzz
=
fTz
*
z
;
return
Vector3
(
fTxy
-
fTwz
,
1.0f
-
(
fTxx
+
fTzz
),
fTyz
+
fTwx
);
}
//-----------------------------------------------------------------------
Vector3
Quaternion
::
ZAxis
(
void
)
const
{
f32
fTx
=
2.0f
*
x
;
f32
fTy
=
2.0f
*
y
;
f32
fTz
=
2.0f
*
z
;
f32
fTwx
=
fTx
*
w
;
f32
fTwy
=
fTy
*
w
;
f32
fTxx
=
fTx
*
x
;
f32
fTxz
=
fTz
*
x
;
f32
fTyy
=
fTy
*
y
;
f32
fTyz
=
fTz
*
y
;
return
Vector3
(
fTxz
+
fTwy
,
fTyz
-
fTwx
,
1.0f
-
(
fTxx
+
fTyy
));
}
//-----------------------------------------------------------------------
void
Quaternion
::
ToAxes
(
Vector3
&
xaxis
,
Vector3
&
yaxis
,
Vector3
&
zaxis
)
const
{
Matrix3
kRot
;
ToRotationMatrix
(
kRot
);
xaxis
.
x
=
kRot
[
0
][
0
];
xaxis
.
y
=
kRot
[
1
][
0
];
xaxis
.
z
=
kRot
[
2
][
0
];
yaxis
.
x
=
kRot
[
0
][
1
];
yaxis
.
y
=
kRot
[
1
][
1
];
yaxis
.
z
=
kRot
[
2
][
1
];
zaxis
.
x
=
kRot
[
0
][
2
];
zaxis
.
y
=
kRot
[
1
][
2
];
zaxis
.
z
=
kRot
[
2
][
2
];
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
operator
+
(
const
Quaternion
&
rkQ
)
const
{
return
Quaternion
(
x
+
rkQ
.
x
,
y
+
rkQ
.
y
,
z
+
rkQ
.
z
,
w
+
rkQ
.
w
);
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
operator
-
(
const
Quaternion
&
rkQ
)
const
{
return
Quaternion
(
x
-
rkQ
.
x
,
y
-
rkQ
.
y
,
z
-
rkQ
.
z
,
w
-
rkQ
.
w
);
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
operator
*
(
const
Quaternion
&
rkQ
)
const
{
// NOTE: Multiplication is not generally commutative, so in most
// cases p*q != q*p.
return
Quaternion
(
w
*
rkQ
.
x
+
x
*
rkQ
.
w
+
y
*
rkQ
.
z
-
z
*
rkQ
.
y
,
w
*
rkQ
.
y
+
y
*
rkQ
.
w
+
z
*
rkQ
.
x
-
x
*
rkQ
.
z
,
w
*
rkQ
.
z
+
z
*
rkQ
.
w
+
x
*
rkQ
.
y
-
y
*
rkQ
.
x
,
w
*
rkQ
.
w
-
x
*
rkQ
.
x
-
y
*
rkQ
.
y
-
z
*
rkQ
.
z
);
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
operator
*
(
f32
fScalar
)
const
{
return
Quaternion
(
fScalar
*
x
,
fScalar
*
y
,
fScalar
*
z
,
fScalar
*
w
);
}
//-----------------------------------------------------------------------
Quaternion
operator
*
(
f32
fScalar
,
const
Quaternion
&
rkQ
)
{
return
Quaternion
(
fScalar
*
rkQ
.
x
,
fScalar
*
rkQ
.
y
,
fScalar
*
rkQ
.
z
,
fScalar
*
rkQ
.
w
);
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
operator
-
()
const
{
return
Quaternion
(
-
x
,
-
y
,
-
z
,
-
w
);
}
//-----------------------------------------------------------------------
f32
Quaternion
::
Dot
(
const
Quaternion
&
rkQ
)
const
{
return
w
*
rkQ
.
w
+
x
*
rkQ
.
x
+
y
*
rkQ
.
y
+
z
*
rkQ
.
z
;
}
//-----------------------------------------------------------------------
f32
Quaternion
::
LengthSquared
()
const
{
return
w
*
w
+
x
*
x
+
y
*
y
+
z
*
z
;
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
Inverse
()
const
{
f32
fNorm
=
w
*
w
+
x
*
x
+
y
*
y
+
z
*
z
;
if
(
fNorm
>
0.0
)
{
f32
fInvNorm
=
1.0f
/
fNorm
;
return
Quaternion
(
-
x
*
fInvNorm
,
-
y
*
fInvNorm
,
-
z
*
fInvNorm
,
w
*
fInvNorm
);
}
else
{
// return an invalid result to flag the error
return
ZERO
;
}
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
UnitInverse
()
const
{
// assert: 'this' is unit length
return
Quaternion
(
-
x
,
-
y
,
-
z
,
w
);
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
Exp
()
const
{
// If q = A*(x*i+y*j+z*k) where (x,y,z) is unit length, then
// exp(q) = cos(A)+sin(A)*(x*i+y*j+z*k). If sin(A) is near zero,
// use exp(q) = cos(A)+A*(x*i+y*j+z*k) since A/sin(A) has limit 1.
Radian
fAngle
(
Maths
::
Sqrt
(
x
*
x
+
y
*
y
+
z
*
z
));
f32
fSin
=
Maths
::
Sin
(
fAngle
);
Quaternion
kResult
;
kResult
.
w
=
Maths
::
Cos
(
fAngle
);
if
(
Maths
::
Abs
(
fSin
)
>=
ms_fEpsilon
)
{
f32
fCoeff
=
fSin
/
(
fAngle
.
ValueRadians
());
kResult
.
x
=
fCoeff
*
x
;
kResult
.
y
=
fCoeff
*
y
;
kResult
.
z
=
fCoeff
*
z
;
}
else
{
kResult
.
x
=
x
;
kResult
.
y
=
y
;
kResult
.
z
=
z
;
}
return
kResult
;
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
Log
()
const
{
// If q = cos(A)+sin(A)*(x*i+y*j+z*k) where (x,y,z) is unit length, then
// log(q) = A*(x*i+y*j+z*k). If sin(A) is near zero, use log(q) =
// sin(A)*(x*i+y*j+z*k) since sin(A)/A has limit 1.
Quaternion
kResult
;
kResult
.
w
=
0.0
;
if
(
Maths
::
Abs
(
w
)
<
1.0
)
{
Radian
fAngle
(
Maths
::
ACos
(
w
));
f32
fSin
=
Maths
::
Sin
(
fAngle
);
if
(
Maths
::
Abs
(
fSin
)
>=
ms_fEpsilon
)
{
f32
fCoeff
=
fAngle
.
ValueRadians
()
/
fSin
;
kResult
.
x
=
fCoeff
*
x
;
kResult
.
y
=
fCoeff
*
y
;
kResult
.
z
=
fCoeff
*
z
;
return
kResult
;
}
}
kResult
.
x
=
x
;
kResult
.
y
=
y
;
kResult
.
z
=
z
;
return
kResult
;
}
//-----------------------------------------------------------------------
Vector3
Quaternion
::
operator
*
(
const
Vector3
&
v
)
const
{
// nVidia SDK implementation
Vector3
uv
,
uuv
;
Vector3
qvec
(
x
,
y
,
z
);
uv
=
qvec
.
Cross
(
v
);
uuv
=
qvec
.
Cross
(
uv
);
uv
*=
(
2.0f
*
w
);
uuv
*=
2.0f
;
return
v
+
uv
+
uuv
;
}
//-----------------------------------------------------------------------
bool
Quaternion
::
Equals
(
const
Quaternion
&
rhs
,
const
Radian
&
tolerance
)
const
{
f32
fCos
=
Dot
(
rhs
);
Radian
angle
=
Maths
::
ACos
(
fCos
);
return
(
Maths
::
Abs
(
angle
.
ValueRadians
())
<=
tolerance
.
ValueRadians
())
||
Maths
::
RealEqual
(
angle
.
ValueRadians
(),
Maths
::
PI
,
tolerance
.
ValueRadians
());
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
Slerp
(
f32
fT
,
const
Quaternion
&
rkP
,
const
Quaternion
&
rkQ
,
bool
shortestPath
)
{
f32
fCos
=
rkP
.
Dot
(
rkQ
);
Quaternion
rkT
;
// Do we need to invert rotation?
if
(
fCos
<
0.0f
&&
shortestPath
)
{
fCos
=
-
fCos
;
rkT
=
-
rkQ
;
}
else
{
rkT
=
rkQ
;
}
if
(
Maths
::
Abs
(
fCos
)
<
1
-
ms_fEpsilon
)
{
// Standard case (slerp)
f32
fSin
=
Maths
::
Sqrt
(
1
-
Maths
::
Sqr
(
fCos
));
Radian
fAngle
=
Maths
::
ATan2
(
fSin
,
fCos
);
f32
fInvSin
=
1.0f
/
fSin
;
f32
fCoeff0
=
Maths
::
Sin
((
1.0f
-
fT
)
*
fAngle
)
*
fInvSin
;
f32
fCoeff1
=
Maths
::
Sin
(
fT
*
fAngle
)
*
fInvSin
;
return
fCoeff0
*
rkP
+
fCoeff1
*
rkT
;
}
else
{
// There are two situations:
// 1. "rkP" and "rkQ" are very close (fCos ~= +1), so we can do a linear
// interpolation safely.
// 2. "rkP" and "rkQ" are almost inverse of each other (fCos ~= -1), there
// are an infinite number of possibilities interpolation. but we haven't
// have method to fix this case, so just use linear interpolation here.
Quaternion
t
=
(
1.0f
-
fT
)
*
rkP
+
fT
*
rkT
;
// taking the complement requires renormalisation
t
.
Normalise
();
return
t
;
}
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
SlerpExtraSpins
(
f32
fT
,
const
Quaternion
&
rkP
,
const
Quaternion
&
rkQ
,
int
iExtraSpins
)
{
f32
fCos
=
rkP
.
Dot
(
rkQ
);
Radian
fAngle
(
Maths
::
ACos
(
fCos
));
if
(
Maths
::
Abs
(
fAngle
.
ValueRadians
())
<
ms_fEpsilon
)
return
rkP
;
f32
fSin
=
Maths
::
Sin
(
fAngle
);
f32
fPhase
(
Maths
::
PI
*
iExtraSpins
*
fT
);
f32
fInvSin
=
1.0f
/
fSin
;
f32
fCoeff0
=
Maths
::
Sin
((
1.0f
-
fT
)
*
fAngle
.
ValueRadians
()
-
fPhase
)
*
fInvSin
;
f32
fCoeff1
=
Maths
::
Sin
(
fT
*
fAngle
.
ValueRadians
()
+
fPhase
)
*
fInvSin
;
return
fCoeff0
*
rkP
+
fCoeff1
*
rkQ
;
}
//-----------------------------------------------------------------------
void
Quaternion
::
Intermediate
(
const
Quaternion
&
rkQ0
,
const
Quaternion
&
rkQ1
,
const
Quaternion
&
rkQ2
,
Quaternion
&
rkA
,
Quaternion
&
rkB
)
{
// assert: q0, q1, q2 are unit quaternions
Quaternion
kQ0inv
=
rkQ0
.
UnitInverse
();
Quaternion
kQ1inv
=
rkQ1
.
UnitInverse
();
Quaternion
rkP0
=
kQ0inv
*
rkQ1
;
Quaternion
rkP1
=
kQ1inv
*
rkQ2
;
Quaternion
kArg
=
0.25
*
(
rkP0
.
Log
()
-
rkP1
.
Log
());
Quaternion
kMinusArg
=
-
kArg
;
rkA
=
rkQ1
*
kArg
.
Exp
();
rkB
=
rkQ1
*
kMinusArg
.
Exp
();
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
Squad
(
f32
fT
,
const
Quaternion
&
rkP
,
const
Quaternion
&
rkA
,
const
Quaternion
&
rkB
,
const
Quaternion
&
rkQ
,
bool
shortestPath
)
{
f32
fSlerpT
=
2.0f
*
fT
*
(
1.0f
-
fT
);
Quaternion
kSlerpP
=
Slerp
(
fT
,
rkP
,
rkQ
,
shortestPath
);
Quaternion
kSlerpQ
=
Slerp
(
fT
,
rkA
,
rkB
);
return
Slerp
(
fSlerpT
,
kSlerpP
,
kSlerpQ
);
}
//-----------------------------------------------------------------------
f32
Quaternion
::
Normalise
(
void
)
{
f32
len
=
LengthSquared
();
f32
factor
=
1.0f
/
Maths
::
Sqrt
(
len
);
*
this
=
*
this
*
factor
;
return
len
;
}
//-----------------------------------------------------------------------
Radian
Quaternion
::
GetRoll
(
bool
reprojectAxis
)
const
{
if
(
reprojectAxis
)
{
// roll = atan2(localx.y, localx.x)
// pick parts of xAxis() implementation that we need
// f32 fTx = 2.0*x;
f32
fTy
=
2.0f
*
y
;
f32
fTz
=
2.0f
*
z
;
f32
fTwz
=
fTz
*
w
;
f32
fTxy
=
fTy
*
x
;
f32
fTyy
=
fTy
*
y
;
f32
fTzz
=
fTz
*
z
;
// Vector3(1.0-(fTyy+fTzz), fTxy+fTwz, fTxz-fTwy);
return
Radian
(
Maths
::
ATan2
(
fTxy
+
fTwz
,
1.0f
-
(
fTyy
+
fTzz
)));
}
else
{
return
Radian
(
Maths
::
ATan2
(
2
*
(
x
*
y
+
w
*
z
),
w
*
w
+
x
*
x
-
y
*
y
-
z
*
z
));
}
}
//-----------------------------------------------------------------------
Radian
Quaternion
::
GetPitch
(
bool
reprojectAxis
)
const
{
if
(
reprojectAxis
)
{
// pitch = atan2(localy.z, localy.y)
// pick parts of YAxis() implementation that we need
f32
fTx
=
2.0f
*
x
;
// f32 fTy = 2.0f*y;
f32
fTz
=
2.0f
*
z
;
f32
fTwx
=
fTx
*
w
;
f32
fTxx
=
fTx
*
x
;
f32
fTyz
=
fTz
*
y
;
f32
fTzz
=
fTz
*
z
;
// Vector3(fTxy-fTwz, 1.0-(fTxx+fTzz), fTyz+fTwx);
return
Radian
(
Maths
::
ATan2
(
fTyz
+
fTwx
,
1.0f
-
(
fTxx
+
fTzz
)));
}
else
{
// internal version
return
Radian
(
Maths
::
ATan2
(
2
*
(
y
*
z
+
w
*
x
),
w
*
w
-
x
*
x
-
y
*
y
+
z
*
z
));
}
}
//-----------------------------------------------------------------------
Radian
Quaternion
::
GetYaw
(
bool
reprojectAxis
)
const
{
if
(
reprojectAxis
)
{
// yaw = atan2(localz.x, localz.z)
// pick parts of ZAxis() implementation that we need
f32
fTx
=
2.0f
*
x
;
f32
fTy
=
2.0f
*
y
;
f32
fTz
=
2.0f
*
z
;
f32
fTwy
=
fTy
*
w
;
f32
fTxx
=
fTx
*
x
;
f32
fTxz
=
fTz
*
x
;
f32
fTyy
=
fTy
*
y
;
// Vector3(fTxz+fTwy, fTyz-fTwx, 1.0-(fTxx+fTyy));
return
Radian
(
Maths
::
ATan2
(
fTxz
+
fTwy
,
1.0f
-
(
fTxx
+
fTyy
)));
}
else
{
// internal version
return
Radian
(
Maths
::
ASin
(
-
2
*
(
x
*
z
-
w
*
y
)));
}
}
//-----------------------------------------------------------------------
Quaternion
Quaternion
::
Nlerp
(
const
Quaternion
&
rkQ
,
f32
fT
,
bool
shortestPath
)
const
{
const
Quaternion
&
rkP
=
*
this
;
Quaternion
result
;
f32
fCos
=
rkP
.
Dot
(
rkQ
);
if
(
fCos
<
0.0f
&&
shortestPath
)
{
result
=
rkP
+
fT
*
((
-
rkQ
)
-
rkP
);
}
else
{
result
=
rkP
+
fT
*
(
rkQ
-
rkP
);
}
result
.
Normalise
();
return
result
;
}
void
Quaternion
::
SetAlongVector
(
const
Vector3
&
vect
,
const
Vector3
&
up
)
{
Vector3
xAxis
=
vect
.
Cross
(
up
);
Vector3
yAxis
=
vect
.
Cross
(
xAxis
);
FromAxes
(
xAxis
,
yAxis
,
vect
);
}
}
File Metadata
Details
Attached
Mime Type
text/x-c++
Expires
Wed, Jan 15, 9:22 PM (3 h, 22 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
72056
Default Alt Text
Quaternion.cpp (16 KB)
Attached To
Mode
rEE Echo 3
Attached
Detach File
Event Timeline
Log In to Comment