Page MenuHomePhorge

Quaternion.cpp
No OneTemporary

Size
16 KB
Referenced Files
None
Subscribers
None

Quaternion.cpp

#include <echo/Maths/Quaternion.h>
#include <echo/Maths/Matrix3.h>
#include <echo/Maths/Vector3.h>
#include <echo/Maths/Matrix4.h>
namespace Echo
{
const f32 Quaternion::ms_fEpsilon = 1e-03f;
const Quaternion Quaternion::ZERO(0.0f, 0.0f, 0.0f, 0.0f);
const Quaternion Quaternion::IDENTITY(0.0f, 0.0f, 0.0f, 1.0f);
//-----------------------------------------------------------------------
void Quaternion::FromRotationMatrix(const Matrix3& kRot)
{
// Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
// article "Quaternion Calculus and Fast Animation".
f32 fTrace = kRot[0][0]+kRot[1][1]+kRot[2][2];
f32 fRoot;
if ( fTrace > 0.0 )
{
// |w| > 1/2, may as well choose w > 1/2
fRoot = Maths::Sqrt(fTrace + 1.0f); // 2w
w = 0.5f*fRoot;
fRoot = 0.5f/fRoot; // 1/(4w)
x = (kRot[2][1]-kRot[1][2])*fRoot;
y = (kRot[0][2]-kRot[2][0])*fRoot;
z = (kRot[1][0]-kRot[0][1])*fRoot;
}
else
{
// |w| <= 1/2
static size_t s_iNext[3] = { 1, 2, 0 };
size_t i = 0;
if ( kRot[1][1] > kRot[0][0] )
i = 1;
if ( kRot[2][2] > kRot[i][i] )
i = 2;
size_t j = s_iNext[i];
size_t k = s_iNext[j];
fRoot = Maths::Sqrt(kRot[i][i] - kRot[j][j] - kRot[k][k] + 1.0f);
f32* apkQuat[3] = { &x, &y, &z };
*apkQuat[i] = 0.5f*fRoot;
fRoot = 0.5f/fRoot;
w = (kRot[k][j]-kRot[j][k])*fRoot;
*apkQuat[j] = (kRot[j][i]+kRot[i][j])*fRoot;
*apkQuat[k] = (kRot[k][i]+kRot[i][k])*fRoot;
}
}
//-----------------------------------------------------------------------
void Quaternion::ToRotationMatrix(Matrix3& kRot) const
{
f32 fTx = x+x;
f32 fTy = y+y;
f32 fTz = z+z;
f32 fTwx = fTx*w;
f32 fTwy = fTy*w;
f32 fTwz = fTz*w;
f32 fTxx = fTx*x;
f32 fTxy = fTy*x;
f32 fTxz = fTz*x;
f32 fTyy = fTy*y;
f32 fTyz = fTz*y;
f32 fTzz = fTz*z;
kRot[0][0] = 1.0f-(fTyy+fTzz);
kRot[0][1] = fTxy-fTwz;
kRot[0][2] = fTxz+fTwy;
kRot[1][0] = fTxy+fTwz;
kRot[1][1] = 1.0f-(fTxx+fTzz);
kRot[1][2] = fTyz-fTwx;
kRot[2][0] = fTxz-fTwy;
kRot[2][1] = fTyz+fTwx;
kRot[2][2] = 1.0f-(fTxx+fTyy);
}
//-----------------------------------------------------------------------
void Quaternion::FromAngleAxis(const Radian& rfAngle, const Vector3& rkAxis)
{
// assert: axis[] is unit length
//
// The quaternion representing the rotation is
// q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)
Radian fHalfAngle ( 0.5*rfAngle );
f32 fSin = Maths::Sin(fHalfAngle);
w = Maths::Cos(fHalfAngle);
x = fSin*rkAxis.x;
y = fSin*rkAxis.y;
z = fSin*rkAxis.z;
}
//-----------------------------------------------------------------------
void Quaternion::ToAngleAxis(Radian& rfAngle, Vector3& rkAxis) const
{
// The quaternion representing the rotation is
// q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k)
f32 fSqrLength = x*x+y*y+z*z;
if ( fSqrLength > 0.0 )
{
rfAngle = 2.0 * Maths::ACos(w);
f32 fInvLength = Maths::InvSqrt(fSqrLength);
rkAxis.x = x*fInvLength;
rkAxis.y = y*fInvLength;
rkAxis.z = z*fInvLength;
}
else
{
// angle is 0 (mod 2*pi), so any axis will do
rfAngle = f32(0.0);
rkAxis.x = 1.0;
rkAxis.y = 0.0;
rkAxis.z = 0.0;
}
}
//-----------------------------------------------------------------------
void Quaternion::FromAxes(const Vector3* akAxis)
{
Matrix3 kRot;
for (size_t iCol = 0; iCol < 3; iCol++)
{
kRot[0][iCol] = akAxis[iCol].x;
kRot[1][iCol] = akAxis[iCol].y;
kRot[2][iCol] = akAxis[iCol].z;
}
FromRotationMatrix(kRot);
}
//-----------------------------------------------------------------------
void Quaternion::FromAxes(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis)
{
Matrix3 kRot;
kRot[0][0] = xaxis.x;
kRot[1][0] = xaxis.y;
kRot[2][0] = xaxis.z;
kRot[0][1] = yaxis.x;
kRot[1][1] = yaxis.y;
kRot[2][1] = yaxis.z;
kRot[0][2] = zaxis.x;
kRot[1][2] = zaxis.y;
kRot[2][2] = zaxis.z;
FromRotationMatrix(kRot);
}
//-----------------------------------------------------------------------
void Quaternion::ToAxes(Vector3* akAxis) const
{
Matrix3 kRot;
ToRotationMatrix(kRot);
for (size_t iCol = 0; iCol < 3; iCol++)
{
akAxis[iCol].x = kRot[0][iCol];
akAxis[iCol].y = kRot[1][iCol];
akAxis[iCol].z = kRot[2][iCol];
}
}
//-----------------------------------------------------------------------
Vector3 Quaternion::XAxis(void) const
{
//f32 fTx = 2.0*x;
f32 fTy = 2.0f*y;
f32 fTz = 2.0f*z;
f32 fTwy = fTy*w;
f32 fTwz = fTz*w;
f32 fTxy = fTy*x;
f32 fTxz = fTz*x;
f32 fTyy = fTy*y;
f32 fTzz = fTz*z;
return Vector3(1.0f - (fTyy + fTzz), fTxy + fTwz, fTxz - fTwy);
}
//-----------------------------------------------------------------------
Vector3 Quaternion::YAxis(void) const
{
f32 fTx = 2.0f*x;
f32 fTy = 2.0f*y;
f32 fTz = 2.0f*z;
f32 fTwx = fTx*w;
f32 fTwz = fTz*w;
f32 fTxx = fTx*x;
f32 fTxy = fTy*x;
f32 fTyz = fTz*y;
f32 fTzz = fTz*z;
return Vector3(fTxy - fTwz, 1.0f - (fTxx + fTzz), fTyz + fTwx);
}
//-----------------------------------------------------------------------
Vector3 Quaternion::ZAxis(void) const
{
f32 fTx = 2.0f*x;
f32 fTy = 2.0f*y;
f32 fTz = 2.0f*z;
f32 fTwx = fTx*w;
f32 fTwy = fTy*w;
f32 fTxx = fTx*x;
f32 fTxz = fTz*x;
f32 fTyy = fTy*y;
f32 fTyz = fTz*y;
return Vector3(fTxz + fTwy, fTyz - fTwx, 1.0f - (fTxx + fTyy));
}
//-----------------------------------------------------------------------
void Quaternion::ToAxes(Vector3& xaxis, Vector3& yaxis, Vector3& zaxis) const
{
Matrix3 kRot;
ToRotationMatrix(kRot);
xaxis.x = kRot[0][0];
xaxis.y = kRot[1][0];
xaxis.z = kRot[2][0];
yaxis.x = kRot[0][1];
yaxis.y = kRot[1][1];
yaxis.z = kRot[2][1];
zaxis.x = kRot[0][2];
zaxis.y = kRot[1][2];
zaxis.z = kRot[2][2];
}
//-----------------------------------------------------------------------
Quaternion Quaternion::operator+(const Quaternion& rkQ) const
{
return Quaternion(x + rkQ.x, y + rkQ.y, z + rkQ.z, w + rkQ.w);
}
//-----------------------------------------------------------------------
Quaternion Quaternion::operator-(const Quaternion& rkQ) const
{
return Quaternion(x - rkQ.x, y - rkQ.y, z - rkQ.z, w - rkQ.w);
}
//-----------------------------------------------------------------------
Quaternion Quaternion::operator*(const Quaternion& rkQ) const
{
// NOTE: Multiplication is not generally commutative, so in most
// cases p*q != q*p.
return Quaternion
(
w * rkQ.x + x * rkQ.w + y * rkQ.z - z * rkQ.y,
w * rkQ.y + y * rkQ.w + z * rkQ.x - x * rkQ.z,
w * rkQ.z + z * rkQ.w + x * rkQ.y - y * rkQ.x,
w * rkQ.w - x * rkQ.x - y * rkQ.y - z * rkQ.z
);
}
//-----------------------------------------------------------------------
Quaternion Quaternion::operator*(f32 fScalar) const
{
return Quaternion(fScalar*x, fScalar*y, fScalar*z, fScalar * w);
}
//-----------------------------------------------------------------------
Quaternion operator*(f32 fScalar, const Quaternion& rkQ)
{
return Quaternion(fScalar * rkQ.x, fScalar * rkQ.y,
fScalar*rkQ.z,fScalar*rkQ.w);
}
//-----------------------------------------------------------------------
Quaternion Quaternion::operator-() const
{
return Quaternion(-x, -y, -z, -w);
}
//-----------------------------------------------------------------------
f32 Quaternion::Dot(const Quaternion& rkQ) const
{
return w*rkQ.w+x*rkQ.x+y*rkQ.y+z*rkQ.z;
}
//-----------------------------------------------------------------------
f32 Quaternion::LengthSquared() const
{
return w*w+x*x+y*y+z*z;
}
//-----------------------------------------------------------------------
Quaternion Quaternion::Inverse() const
{
f32 fNorm = w*w+x*x+y*y+z*z;
if ( fNorm > 0.0 )
{
f32 fInvNorm = 1.0f/fNorm;
return Quaternion(-x*fInvNorm, -y*fInvNorm, -z*fInvNorm, w * fInvNorm);
}
else
{
// return an invalid result to flag the error
return ZERO;
}
}
//-----------------------------------------------------------------------
Quaternion Quaternion::UnitInverse() const
{
// assert: 'this' is unit length
return Quaternion(-x, -y, -z, w);
}
//-----------------------------------------------------------------------
Quaternion Quaternion::Exp() const
{
// If q = A*(x*i+y*j+z*k) where (x,y,z) is unit length, then
// exp(q) = cos(A)+sin(A)*(x*i+y*j+z*k). If sin(A) is near zero,
// use exp(q) = cos(A)+A*(x*i+y*j+z*k) since A/sin(A) has limit 1.
Radian fAngle(Maths::Sqrt(x * x + y * y + z * z));
f32 fSin = Maths::Sin(fAngle);
Quaternion kResult;
kResult.w = Maths::Cos(fAngle);
if(Maths::Abs(fSin) >= ms_fEpsilon)
{
f32 fCoeff = fSin/(fAngle.ValueRadians());
kResult.x = fCoeff*x;
kResult.y = fCoeff*y;
kResult.z = fCoeff*z;
}
else
{
kResult.x = x;
kResult.y = y;
kResult.z = z;
}
return kResult;
}
//-----------------------------------------------------------------------
Quaternion Quaternion::Log() const
{
// If q = cos(A)+sin(A)*(x*i+y*j+z*k) where (x,y,z) is unit length, then
// log(q) = A*(x*i+y*j+z*k). If sin(A) is near zero, use log(q) =
// sin(A)*(x*i+y*j+z*k) since sin(A)/A has limit 1.
Quaternion kResult;
kResult.w = 0.0;
if(Maths::Abs(w) < 1.0)
{
Radian fAngle(Maths::ACos(w));
f32 fSin = Maths::Sin(fAngle);
if(Maths::Abs(fSin) >= ms_fEpsilon)
{
f32 fCoeff = fAngle.ValueRadians()/fSin;
kResult.x = fCoeff*x;
kResult.y = fCoeff*y;
kResult.z = fCoeff*z;
return kResult;
}
}
kResult.x = x;
kResult.y = y;
kResult.z = z;
return kResult;
}
//-----------------------------------------------------------------------
Vector3 Quaternion::operator*(const Vector3& v) const
{
// nVidia SDK implementation
Vector3 uv, uuv;
Vector3 qvec(x, y, z);
uv = qvec.Cross(v);
uuv = qvec.Cross(uv);
uv *= (2.0f * w);
uuv *= 2.0f;
return v + uv + uuv;
}
//-----------------------------------------------------------------------
bool Quaternion::Equals(const Quaternion& rhs, const Radian& tolerance) const
{
f32 fCos = Dot(rhs);
Radian angle = Maths::ACos(fCos);
return(Maths::Abs(angle.ValueRadians()) <= tolerance.ValueRadians())
|| Maths::RealEqual(angle.ValueRadians(), Maths::PI, tolerance.ValueRadians());
}
//-----------------------------------------------------------------------
Quaternion Quaternion::Slerp(f32 fT, const Quaternion& rkP,
const Quaternion& rkQ, bool shortestPath)
{
f32 fCos = rkP.Dot(rkQ);
Quaternion rkT;
// Do we need to invert rotation?
if (fCos < 0.0f && shortestPath)
{
fCos = -fCos;
rkT = -rkQ;
}
else
{
rkT = rkQ;
}
if(Maths::Abs(fCos) < 1 - ms_fEpsilon)
{
// Standard case (slerp)
f32 fSin = Maths::Sqrt(1 - Maths::Sqr(fCos));
Radian fAngle = Maths::ATan2(fSin, fCos);
f32 fInvSin = 1.0f / fSin;
f32 fCoeff0 = Maths::Sin((1.0f - fT) * fAngle) * fInvSin;
f32 fCoeff1 = Maths::Sin(fT * fAngle) * fInvSin;
return fCoeff0 * rkP + fCoeff1 * rkT;
}
else
{
// There are two situations:
// 1. "rkP" and "rkQ" are very close (fCos ~= +1), so we can do a linear
// interpolation safely.
// 2. "rkP" and "rkQ" are almost inverse of each other (fCos ~= -1), there
// are an infinite number of possibilities interpolation. but we haven't
// have method to fix this case, so just use linear interpolation here.
Quaternion t = (1.0f - fT) * rkP + fT * rkT;
// taking the complement requires renormalisation
t.Normalise();
return t;
}
}
//-----------------------------------------------------------------------
Quaternion Quaternion::SlerpExtraSpins(f32 fT,
const Quaternion& rkP, const Quaternion& rkQ, int iExtraSpins)
{
f32 fCos = rkP.Dot(rkQ);
Radian fAngle(Maths::ACos(fCos));
if(Maths::Abs(fAngle.ValueRadians()) < ms_fEpsilon)
return rkP;
f32 fSin = Maths::Sin(fAngle);
f32 fPhase(Maths::PI * iExtraSpins * fT);
f32 fInvSin = 1.0f/fSin;
f32 fCoeff0 = Maths::Sin((1.0f - fT) * fAngle.ValueRadians() - fPhase) * fInvSin;
f32 fCoeff1 = Maths::Sin(fT * fAngle.ValueRadians() + fPhase) * fInvSin;
return fCoeff0*rkP + fCoeff1*rkQ;
}
//-----------------------------------------------------------------------
void Quaternion::Intermediate(const Quaternion& rkQ0,
const Quaternion& rkQ1, const Quaternion& rkQ2,
Quaternion& rkA, Quaternion& rkB)
{
// assert: q0, q1, q2 are unit quaternions
Quaternion kQ0inv = rkQ0.UnitInverse();
Quaternion kQ1inv = rkQ1.UnitInverse();
Quaternion rkP0 = kQ0inv*rkQ1;
Quaternion rkP1 = kQ1inv*rkQ2;
Quaternion kArg = 0.25 * (rkP0.Log() - rkP1.Log());
Quaternion kMinusArg = -kArg;
rkA = rkQ1*kArg.Exp();
rkB = rkQ1*kMinusArg.Exp();
}
//-----------------------------------------------------------------------
Quaternion Quaternion::Squad(f32 fT,
const Quaternion& rkP, const Quaternion& rkA,
const Quaternion& rkB, const Quaternion& rkQ, bool shortestPath)
{
f32 fSlerpT = 2.0f*fT*(1.0f-fT);
Quaternion kSlerpP = Slerp(fT, rkP, rkQ, shortestPath);
Quaternion kSlerpQ = Slerp(fT, rkA, rkB);
return Slerp(fSlerpT, kSlerpP ,kSlerpQ);
}
//-----------------------------------------------------------------------
f32 Quaternion::Normalise(void)
{
f32 len = LengthSquared();
f32 factor = 1.0f / Maths::Sqrt(len);
*this = *this * factor;
return len;
}
//-----------------------------------------------------------------------
Radian Quaternion::GetRoll(bool reprojectAxis) const
{
if (reprojectAxis)
{
// roll = atan2(localx.y, localx.x)
// pick parts of xAxis() implementation that we need
// f32 fTx = 2.0*x;
f32 fTy = 2.0f*y;
f32 fTz = 2.0f*z;
f32 fTwz = fTz*w;
f32 fTxy = fTy*x;
f32 fTyy = fTy*y;
f32 fTzz = fTz*z;
// Vector3(1.0-(fTyy+fTzz), fTxy+fTwz, fTxz-fTwy);
return Radian(Maths::ATan2(fTxy + fTwz, 1.0f - (fTyy + fTzz)));
}
else
{
return Radian(Maths::ATan2(2 * (x * y + w * z), w * w + x * x - y * y - z * z));
}
}
//-----------------------------------------------------------------------
Radian Quaternion::GetPitch(bool reprojectAxis) const
{
if (reprojectAxis)
{
// pitch = atan2(localy.z, localy.y)
// pick parts of YAxis() implementation that we need
f32 fTx = 2.0f*x;
// f32 fTy = 2.0f*y;
f32 fTz = 2.0f*z;
f32 fTwx = fTx*w;
f32 fTxx = fTx*x;
f32 fTyz = fTz*y;
f32 fTzz = fTz*z;
// Vector3(fTxy-fTwz, 1.0-(fTxx+fTzz), fTyz+fTwx);
return Radian(Maths::ATan2(fTyz + fTwx, 1.0f - (fTxx + fTzz)));
}
else
{
// internal version
return Radian(Maths::ATan2(2 * (y * z + w * x), w * w - x * x - y * y + z * z));
}
}
//-----------------------------------------------------------------------
Radian Quaternion::GetYaw(bool reprojectAxis) const
{
if (reprojectAxis)
{
// yaw = atan2(localz.x, localz.z)
// pick parts of ZAxis() implementation that we need
f32 fTx = 2.0f*x;
f32 fTy = 2.0f*y;
f32 fTz = 2.0f*z;
f32 fTwy = fTy*w;
f32 fTxx = fTx*x;
f32 fTxz = fTz*x;
f32 fTyy = fTy*y;
// Vector3(fTxz+fTwy, fTyz-fTwx, 1.0-(fTxx+fTyy));
return Radian(Maths::ATan2(fTxz + fTwy, 1.0f - (fTxx + fTyy)));
}
else
{
// internal version
return Radian(Maths::ASin(-2 * (x * z - w * y)));
}
}
//-----------------------------------------------------------------------
Quaternion Quaternion::Nlerp(const Quaternion& rkQ, f32 fT, bool shortestPath) const
{
const Quaternion& rkP = *this;
Quaternion result;
f32 fCos = rkP.Dot(rkQ);
if (fCos < 0.0f && shortestPath)
{
result = rkP + fT * ((-rkQ) - rkP);
}
else
{
result = rkP + fT * (rkQ - rkP);
}
result.Normalise();
return result;
}
void Quaternion::SetAlongVector(const Vector3& vect, const Vector3& up)
{
Vector3 xAxis = vect.Cross(up);
Vector3 yAxis = vect.Cross(xAxis);
FromAxes(xAxis,yAxis,vect);
}
}

File Metadata

Mime Type
text/x-c++
Expires
Wed, Jan 15, 9:22 PM (3 h, 22 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
72056
Default Alt Text
Quaternion.cpp (16 KB)

Event Timeline