Page MenuHomePhorge

Matrix4.h
No OneTemporary

Size
24 KB
Referenced Files
None
Subscribers
None

Matrix4.h

/*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2009 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef _ECHO_MATRIX4_H_
#define _ECHO_MATRIX4_H_
#include <echo/Maths/Vector3.h>
#include <echo/Maths/Vector4.h>
#include <echo/Maths/Matrix3.h>
#include <echo/Maths/Plane.h>
namespace Echo
{
/** \addtogroup Core
* @{
*/
/** \addtogroup EMaths
* @{
*/
/** Class encapsulating a standard 4x4 homogeneous matrix.
@remarks
OGRE uses column vectors when applying matrix multiplications,
This means a vector is represented as a single column, 4-row
matrix. This has the effect that the transformations implemented
by the matrices happens right-to-left e.g. if vector V is to be
transformed by M1 then M2 then M3, the calculation would be
M3 * M2 * M1 * V. The order that matrices are concatenated is
vital since matrix multiplication is not commutative, i.e. you
can get a different result if you concatenate in the wrong order.
@par
The use of column vectors and right-to-left ordering is the
standard in most mathematical texts, and is the same as used in
OpenGL. It is, however, the opposite of Direct3D, which has
inexplicably chosen to differ from the accepted standard and uses
row vectors and left-to-right matrix multiplication.
@par
OGRE deals with the differences between D3D and OpenGL etc.
internally when operating through different render systems. OGRE
users only need to conform to standard maths conventions, i.e.
right-to-left matrix multiplication, (OGRE transposes matrices it
passes to D3D to compensate).
@par
The generic form M * V which shows the layout of the matrix
entries is shown below:
<pre>
[ m[0][0] m[0][1] m[0][2] m[0][3] ] {x}
| m[1][0] m[1][1] m[1][2] m[1][3] | * {y}
| m[2][0] m[2][1] m[2][2] m[2][3] | {z}
[ m[3][0] m[3][1] m[3][2] m[3][3] ] {1}
</pre>
*/
class Matrix4
{
protected:
/// The matrix entries, indexed by [row][col].
union {
f32 m[4][4];
f32 _m[16];
};
public:
/** Default constructor.
@note
It does <b>NOT</b> initialize the matrix for efficiency.
*/
inline Matrix4()
{
}
inline Matrix4(
f32 m00, f32 m01, f32 m02, f32 m03,
f32 m10, f32 m11, f32 m12, f32 m13,
f32 m20, f32 m21, f32 m22, f32 m23,
f32 m30, f32 m31, f32 m32, f32 m33 )
{
m[0][0] = m00;
m[0][1] = m01;
m[0][2] = m02;
m[0][3] = m03;
m[1][0] = m10;
m[1][1] = m11;
m[1][2] = m12;
m[1][3] = m13;
m[2][0] = m20;
m[2][1] = m21;
m[2][2] = m22;
m[2][3] = m23;
m[3][0] = m30;
m[3][1] = m31;
m[3][2] = m32;
m[3][3] = m33;
}
/** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix.
*/
inline Matrix4(const Matrix3& m3x3)
{
operator=(IDENTITY);
operator=(m3x3);
}
/** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling EQuaternion.
*/
inline Matrix4(const Quaternion& rot)
{
Matrix3 m3x3;
rot.ToRotationMatrix(m3x3);
operator=(IDENTITY);
operator=(m3x3);
}
/** Exchange the contents of this matrix with another.
*/
inline void swap(Matrix4& other)
{
std::swap(m[0][0], other.m[0][0]);
std::swap(m[0][1], other.m[0][1]);
std::swap(m[0][2], other.m[0][2]);
std::swap(m[0][3], other.m[0][3]);
std::swap(m[1][0], other.m[1][0]);
std::swap(m[1][1], other.m[1][1]);
std::swap(m[1][2], other.m[1][2]);
std::swap(m[1][3], other.m[1][3]);
std::swap(m[2][0], other.m[2][0]);
std::swap(m[2][1], other.m[2][1]);
std::swap(m[2][2], other.m[2][2]);
std::swap(m[2][3], other.m[2][3]);
std::swap(m[3][0], other.m[3][0]);
std::swap(m[3][1], other.m[3][1]);
std::swap(m[3][2], other.m[3][2]);
std::swap(m[3][3], other.m[3][3]);
}
inline f32* operator [] ( size_t iRow )
{
assert( iRow < 4 );
return m[iRow];
}
inline const f32 *operator [] ( size_t iRow ) const
{
assert( iRow < 4 );
return m[iRow];
}
inline Matrix4 concatenate(const Matrix4 &m2) const
{
Matrix4 r;
r.m[0][0] = m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0] + m[0][3] * m2.m[3][0];
r.m[0][1] = m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1] + m[0][3] * m2.m[3][1];
r.m[0][2] = m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2] + m[0][3] * m2.m[3][2];
r.m[0][3] = m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3] * m2.m[3][3];
r.m[1][0] = m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0] + m[1][3] * m2.m[3][0];
r.m[1][1] = m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1] + m[1][3] * m2.m[3][1];
r.m[1][2] = m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2] + m[1][3] * m2.m[3][2];
r.m[1][3] = m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3] * m2.m[3][3];
r.m[2][0] = m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0] + m[2][3] * m2.m[3][0];
r.m[2][1] = m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1] + m[2][3] * m2.m[3][1];
r.m[2][2] = m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2] + m[2][3] * m2.m[3][2];
r.m[2][3] = m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3] * m2.m[3][3];
r.m[3][0] = m[3][0] * m2.m[0][0] + m[3][1] * m2.m[1][0] + m[3][2] * m2.m[2][0] + m[3][3] * m2.m[3][0];
r.m[3][1] = m[3][0] * m2.m[0][1] + m[3][1] * m2.m[1][1] + m[3][2] * m2.m[2][1] + m[3][3] * m2.m[3][1];
r.m[3][2] = m[3][0] * m2.m[0][2] + m[3][1] * m2.m[1][2] + m[3][2] * m2.m[2][2] + m[3][3] * m2.m[3][2];
r.m[3][3] = m[3][0] * m2.m[0][3] + m[3][1] * m2.m[1][3] + m[3][2] * m2.m[2][3] + m[3][3] * m2.m[3][3];
return r;
}
/** Matrix concatenation using '*'.
*/
inline Matrix4 operator *(const Matrix4 &m2) const
{
return concatenate( m2 );
}
/** Vector transformation using '*'.
@remarks
Transforms the given 3-D vector by the matrix, projecting the
result back into <i>w</i> = 1.
@note
This means that the initial <i>w</i> is considered to be 1.0,
and then all the tree elements of the resulting 3-D vector are
divided by the resulting <i>w</i>.
*/
inline Vector3 operator *(const Vector3 &v) const
{
Vector3 r;
f32 fInvW = 1.0f / ( m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] );
r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW;
r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW;
r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW;
return r;
}
inline Vector4 operator *(const Vector4& v) const
{
return Vector4(
m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w,
m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w
);
}
inline Plane operator *(const Plane& p) const
{
Plane ret;
Matrix4 invTrans = inverse().transpose();
Vector4 v4(p.normal.x, p.normal.y, p.normal.z, p.d);
v4 = invTrans * v4;
ret.normal.x = v4.x;
ret.normal.y = v4.y;
ret.normal.z = v4.z;
ret.d = v4.w / ret.normal.Normalise();
return ret;
}
/** Matrix addition.
*/
inline Matrix4 operator +(const Matrix4 &m2) const
{
Matrix4 r;
r.m[0][0] = m[0][0] + m2.m[0][0];
r.m[0][1] = m[0][1] + m2.m[0][1];
r.m[0][2] = m[0][2] + m2.m[0][2];
r.m[0][3] = m[0][3] + m2.m[0][3];
r.m[1][0] = m[1][0] + m2.m[1][0];
r.m[1][1] = m[1][1] + m2.m[1][1];
r.m[1][2] = m[1][2] + m2.m[1][2];
r.m[1][3] = m[1][3] + m2.m[1][3];
r.m[2][0] = m[2][0] + m2.m[2][0];
r.m[2][1] = m[2][1] + m2.m[2][1];
r.m[2][2] = m[2][2] + m2.m[2][2];
r.m[2][3] = m[2][3] + m2.m[2][3];
r.m[3][0] = m[3][0] + m2.m[3][0];
r.m[3][1] = m[3][1] + m2.m[3][1];
r.m[3][2] = m[3][2] + m2.m[3][2];
r.m[3][3] = m[3][3] + m2.m[3][3];
return r;
}
/** Matrix subtraction.
*/
inline Matrix4 operator -(const Matrix4 &m2) const
{
Matrix4 r;
r.m[0][0] = m[0][0] - m2.m[0][0];
r.m[0][1] = m[0][1] - m2.m[0][1];
r.m[0][2] = m[0][2] - m2.m[0][2];
r.m[0][3] = m[0][3] - m2.m[0][3];
r.m[1][0] = m[1][0] - m2.m[1][0];
r.m[1][1] = m[1][1] - m2.m[1][1];
r.m[1][2] = m[1][2] - m2.m[1][2];
r.m[1][3] = m[1][3] - m2.m[1][3];
r.m[2][0] = m[2][0] - m2.m[2][0];
r.m[2][1] = m[2][1] - m2.m[2][1];
r.m[2][2] = m[2][2] - m2.m[2][2];
r.m[2][3] = m[2][3] - m2.m[2][3];
r.m[3][0] = m[3][0] - m2.m[3][0];
r.m[3][1] = m[3][1] - m2.m[3][1];
r.m[3][2] = m[3][2] - m2.m[3][2];
r.m[3][3] = m[3][3] - m2.m[3][3];
return r;
}
/** Tests 2 matrices for equality.
*/
inline bool operator ==(const Matrix4& m2) const
{
if(
m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
return false;
return true;
}
/** Tests 2 matrices for inequality.
*/
inline bool operator !=(const Matrix4& m2) const
{
if(
m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
return true;
return false;
}
/** Assignment from 3x3 matrix.
*/
inline void operator =(const Matrix3& mat3)
{
m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2];
m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2];
m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2];
}
inline Matrix4 transpose(void) const
{
return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0],
m[0][1], m[1][1], m[2][1], m[3][1],
m[0][2], m[1][2], m[2][2], m[3][2],
m[0][3], m[1][3], m[2][3], m[3][3]);
}
/*
-----------------------------------------------------------------------
Translation Transformation
-----------------------------------------------------------------------
*/
/** Sets the translation transformation part of the matrix.
*/
inline void setTrans(const Vector3& v)
{
m[0][3] = v.x;
m[1][3] = v.y;
m[2][3] = v.z;
}
/** Extracts the translation transformation part of the matrix.
*/
inline Vector3 getTrans() const
{
return Vector3(m[0][3], m[1][3], m[2][3]);
}
/** Builds a translation matrix
*/
inline void Translation(const Vector3& v)
{
m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = v.x;
m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = v.y;
m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = v.z;
m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
}
inline void Translation( f32 tx, f32 ty, f32 tz )
{
m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = tx;
m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = ty;
m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = tz;
m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
}
/** Gets a translation matrix.
*/
inline static Matrix4 getTrans(const Vector3& v)
{
Matrix4 r;
r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = v.x;
r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = v.y;
r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = v.z;
r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
return r;
}
/** Gets a translation matrix - variation for not using a vector.
*/
inline static Matrix4 getTrans(f32 t_x, f32 t_y, f32 t_z)
{
Matrix4 r;
r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = t_x;
r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = t_y;
r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = t_z;
r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
return r;
}
/*
-----------------------------------------------------------------------
Scale Transformation
-----------------------------------------------------------------------
*/
/** Sets the scale part of the matrix.
*/
inline void setScale(const Vector3& v)
{
m[0][0] = v.x;
m[1][1] = v.y;
m[2][2] = v.z;
}
/** Gets a scale matrix.
*/
inline static Matrix4 getScale(const Vector3& v)
{
Matrix4 r;
r.m[0][0] = v.x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
r.m[1][0] = 0.0; r.m[1][1] = v.y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = v.z; r.m[2][3] = 0.0;
r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
return r;
}
/** Gets a scale matrix - variation for not using a vector.
*/
inline static Matrix4 getScale(f32 s_x, f32 s_y, f32 s_z)
{
Matrix4 r;
r.m[0][0] = s_x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
r.m[1][0] = 0.0; r.m[1][1] = s_y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = s_z; r.m[2][3] = 0.0;
r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
return r;
}
/** Extracts the rotation / scaling part of the Matrix as a 3x3 matrix.
@param m3x3 Destination EMatrix3
*/
inline void extract3x3Matrix(Matrix3& m3x3) const
{
m3x3.m[0][0] = m[0][0];
m3x3.m[0][1] = m[0][1];
m3x3.m[0][2] = m[0][2];
m3x3.m[1][0] = m[1][0];
m3x3.m[1][1] = m[1][1];
m3x3.m[1][2] = m[1][2];
m3x3.m[2][0] = m[2][0];
m3x3.m[2][1] = m[2][1];
m3x3.m[2][2] = m[2][2];
}
/** Determines if this matrix involves a scaling. */
inline bool hasScale() const
{
// check magnitude of column vectors (==local axes)
f32 t = m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0];
if(!Maths::RealEqual(t, 1.0, (f32) 1e-04))
return true;
t = m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1];
if(!Maths::RealEqual(t, 1.0, (f32) 1e-04))
return true;
t = m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2];
if(!Maths::RealEqual(t, 1.0, (f32) 1e-04))
return true;
return false;
}
/** Determines if this matrix involves a negative scaling. */
inline bool hasNegativeScale() const
{
return determinant() < 0;
}
/** Extracts the rotation / scaling part as a quaternion from the Matrix.
*/
inline Quaternion extractQuaternion() const
{
Matrix3 m3x3;
extract3x3Matrix(m3x3);
return Quaternion(m3x3);
}
static const Matrix4 ZERO;
static const Matrix4 IDENTITY;
/** Useful little matrix which takes 2D clipspace {-1, 1} to {0,1}
and inverts the Y. */
static const Matrix4 CLIPSPACE2DTOIMAGESPACE;
inline Matrix4 operator*(f32 scalar) const
{
return Matrix4(
scalar*m[0][0], scalar*m[0][1], scalar*m[0][2], scalar*m[0][3],
scalar*m[1][0], scalar*m[1][1], scalar*m[1][2], scalar*m[1][3],
scalar*m[2][0], scalar*m[2][1], scalar*m[2][2], scalar*m[2][3],
scalar*m[3][0], scalar*m[3][1], scalar*m[3][2], scalar*m[3][3]);
}
/** Function for writing to a stream.
*/
inline friend std::ostream& operator <<
(std::ostream& o, const Matrix4& m)
{
o << "EMatrix4(";
for (size_t i = 0; i < 4; ++i)
{
o << " row" << (unsigned)i << "{";
for(size_t j = 0; j < 4; ++j)
{
o << m[i][j] << " ";
}
o << "}";
}
o << ")";
return o;
}
Matrix4 adjoint() const;
f32 determinant() const;
Matrix4 inverse() const;
/** Building a EMatrix4 from orientation / scale / position.
@remarks
Transform is performed in the order scale, rotate, translation, i.e. translation is independent
of orientation axes, scale does not affect size of translation, rotation and scaling are always
centered on the origin.
*/
void MakeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);
/** Building an inverse EMatrix4 from orientation / scale / position.
@remarks
As MakeTransform except it build the inverse given the same data as MakeTransform, so
performing -translation, -rotate, 1/scale in that order.
*/
void MakeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);
/** Decompose a EMatrix4 to orientation / scale / position.
*/
void decomposition(Vector3& position, Vector3& scale, Quaternion& orientation) const;
/** Check whether or not the matrix is affine matrix.
@remarks
An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1),
e.g. no projective coefficients.
*/
inline bool isAffine(void) const
{
return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1;
}
/** Returns the inverse of the affine matrix.
@note
The matrix must be an affine matrix. @see EMatrix4::isAffine.
*/
Matrix4 inverseAffine(void) const;
/** Concatenate two affine matrices.
@note
The matrices must be affine matrix. @see EMatrix4::isAffine.
*/
inline Matrix4 concatenateAffine(const Matrix4 &m2) const
{
assert(isAffine() && m2.isAffine());
return Matrix4(
m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0],
m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1],
m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2],
m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3],
m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0],
m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1],
m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2],
m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3],
m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0],
m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1],
m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2],
m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3],
0, 0, 0, 1);
}
/** 3-D Vector transformation specially for an affine matrix.
@remarks
Transforms the given 3-D vector by the matrix, projecting the
result back into <i>w</i> = 1.
@note
The matrix must be an affine matrix. @see EMatrix4::isAffine.
*/
inline Vector3 transformAffine(const Vector3& v) const
{
assert(isAffine());
return Vector3(
m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3],
m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3],
m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]);
}
/** 4-D Vector transformation specially for an affine matrix.
@note
The matrix must be an affine matrix. @see EMatrix4::isAffine.
*/
inline Vector4 transformAffine(const Vector4& v) const
{
assert(isAffine());
return Vector4(
m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w,
m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
v.w);
}
};
/* Removed from EVector4 and made a non-member here because otherwise
OgreMatrix4.h and OgreVector4.h have to try to include and inline each
other, which frankly doesn't work ;)
*/
inline Vector4 operator *(const Vector4& v, const Matrix4& mat)
{
return Vector4(
v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + v.w*mat[3][0],
v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + v.w*mat[3][1],
v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + v.w*mat[3][2],
v.x*mat[0][3] + v.y*mat[1][3] + v.z*mat[2][3] + v.w*mat[3][3]
);
}
/** @} */
/** @} */
}
#endif

File Metadata

Mime Type
text/x-c++
Expires
Sun, May 18, 9:09 PM (14 m, 42 s)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
76950
Default Alt Text
Matrix4.h (24 KB)

Event Timeline