Page Menu
Home
Phorge
Search
Configure Global Search
Log In
Files
F97004
Vector3.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Award Token
Size
19 KB
Referenced Files
None
Subscribers
None
Vector3.h
View Options
#ifndef _ECHO_VECTOR3_H_
#define _ECHO_VECTOR3_H_
#include
<ostream>
#include
<echo/Util/StringUtils.h>
#include
<echo/Maths/EchoMaths.h>
namespace
Echo
{
/** \addtogroup Core
* @{
*/
/** \addtogroup EMaths
* @{
*/
/** Standard 3-dimensional vector.
@remarks
A direction in 3D space represented as distances along the 3
orthogonal axes (x, y, z). Note that positions, directions and
scaling factors can be represented by a vector, depending on how
you interpret the values.
*/
template
<
typename
T
>
class
Vector3Generic
{
public
:
typedef
T
StorageType
;
T
x
,
y
,
z
;
inline
Vector3Generic
()
{
}
inline
Vector3Generic
(
const
T
fX
,
const
T
fY
,
const
T
fZ
)
:
x
(
fX
),
y
(
fY
),
z
(
fZ
)
{
}
inline
explicit
Vector3Generic
(
const
T
components
[
3
])
:
x
(
components
[
0
]
),
y
(
components
[
1
]
),
z
(
components
[
2
]
)
{
}
inline
explicit
Vector3Generic
(
T
*
const
r
)
:
x
(
r
[
0
]
),
y
(
r
[
1
]
),
z
(
r
[
2
]
)
{
}
inline
bool
IsZero
()
const
{
return
(
x
==
0
&&
y
==
0
&&
z
==
0
);
}
inline
bool
HasZeroComponent
()
const
{
return
(
x
==
0
||
y
==
0
||
z
==
0
);
}
inline
void
Set
(
T
ix
,
T
iy
,
T
iz
)
{
x
=
ix
;
y
=
iy
;
z
=
iz
;
}
inline
void
Set
(
const
Vector3Generic
<
T
>&
v
)
{
x
=
v
.
x
;
y
=
v
.
y
;
z
=
v
.
z
;
}
inline
void
SetZero
()
{
x
=
0
;
y
=
0
;
z
=
0
;
}
inline
explicit
Vector3Generic
(
const
T
scaler
)
:
x
(
scaler
)
,
y
(
scaler
)
,
z
(
scaler
)
{
}
/** Exchange the contents of this vector with another.
*/
inline
void
Swap
(
Vector3Generic
<
T
>&
other
)
{
std
::
swap
(
x
,
other
.
x
);
std
::
swap
(
y
,
other
.
y
);
std
::
swap
(
z
,
other
.
z
);
}
inline
T
operator
[]
(
const
size_t
i
)
const
{
assert
(
i
<
3
);
return
*
(
&
x
+
i
);
}
inline
T
&
operator
[]
(
const
size_t
i
)
{
assert
(
i
<
3
);
return
*
(
&
x
+
i
);
}
/// Pointer accessor for direct copying
inline
T
*
Ptr
()
{
return
&
x
;
}
/// Pointer accessor for direct copying
inline
const
T
*
Ptr
()
const
{
return
&
x
;
}
/** Assigns the value of the other vector.
@param
rhs The other vector
*/
inline
Vector3Generic
<
T
>&
operator
=
(
const
Vector3Generic
<
T
>&
rhs
)
{
x
=
rhs
.
x
;
y
=
rhs
.
y
;
z
=
rhs
.
z
;
return
*
this
;
}
inline
Vector3Generic
<
T
>&
operator
=
(
const
T
scalar
)
{
x
=
scalar
;
y
=
scalar
;
z
=
scalar
;
return
*
this
;
}
inline
bool
operator
==
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
return
(
x
==
rhs
.
x
&&
y
==
rhs
.
y
&&
z
==
rhs
.
z
);
}
inline
bool
operator
!=
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
return
(
x
!=
rhs
.
x
||
y
!=
rhs
.
y
||
z
!=
rhs
.
z
);
}
// arithmetic operations
inline
Vector3Generic
<
T
>
operator
+
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
return
Vector3Generic
<
T
>
(
x
+
rhs
.
x
,
y
+
rhs
.
y
,
z
+
rhs
.
z
);
}
inline
Vector3Generic
<
T
>
operator
-
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
return
Vector3Generic
<
T
>
(
x
-
rhs
.
x
,
y
-
rhs
.
y
,
z
-
rhs
.
z
);
}
inline
Vector3Generic
<
T
>
operator
*
(
const
T
scalar
)
const
{
return
Vector3Generic
<
T
>
(
x
*
scalar
,
y
*
scalar
,
z
*
scalar
);
}
inline
Vector3Generic
<
T
>
operator
*
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
return
Vector3Generic
<
T
>
(
x
*
rhs
.
x
,
y
*
rhs
.
y
,
z
*
rhs
.
z
);
}
inline
Vector3Generic
<
T
>
operator
/
(
const
T
scalar
)
const
{
assert
(
scalar
!=
T
(
0
)
);
T
inverse
=
T
(
1
)
/
scalar
;
return
Vector3Generic
<
T
>
(
x
*
inverse
,
y
*
inverse
,
z
*
inverse
);
}
inline
Vector3Generic
<
T
>
operator
/
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
return
Vector3Generic
<
T
>
(
x
/
rhs
.
x
,
y
/
rhs
.
y
,
z
/
rhs
.
z
);
}
inline
const
Vector3Generic
<
T
>&
operator
+
()
const
{
return
*
this
;
}
inline
Vector3Generic
<
T
>
operator
-
()
const
{
return
Vector3Generic
<
T
>
(
-
x
,
-
y
,
-
z
);
}
// overloaded operators to help Vector3Generic<T>
inline
friend
Vector3Generic
<
T
>
operator
*
(
const
T
scalar
,
const
Vector3Generic
<
T
>&
rhs
)
{
return
Vector3Generic
<
T
>
(
scalar
*
rhs
.
x
,
scalar
*
rhs
.
y
,
scalar
*
rhs
.
z
);
}
inline
friend
Vector3Generic
<
T
>
operator
/
(
const
T
scalar
,
const
Vector3Generic
<
T
>&
rhs
)
{
return
Vector3Generic
<
T
>
(
scalar
/
rhs
.
x
,
scalar
/
rhs
.
y
,
scalar
/
rhs
.
z
);
}
inline
friend
Vector3Generic
<
T
>
operator
+
(
const
Vector3Generic
<
T
>&
lhs
,
const
T
rhs
)
{
return
Vector3Generic
<
T
>
(
lhs
.
x
+
rhs
,
lhs
.
y
+
rhs
,
lhs
.
z
+
rhs
);
}
inline
friend
Vector3Generic
<
T
>
operator
+
(
const
T
lhs
,
const
Vector3Generic
<
T
>&
rhs
)
{
return
Vector3Generic
<
T
>
(
lhs
+
rhs
.
x
,
lhs
+
rhs
.
y
,
lhs
+
rhs
.
z
);
}
inline
friend
Vector3Generic
<
T
>
operator
-
(
const
Vector3Generic
<
T
>&
lhs
,
const
T
rhs
)
{
return
Vector3Generic
<
T
>
(
lhs
.
x
-
rhs
,
lhs
.
y
-
rhs
,
lhs
.
z
-
rhs
);
}
inline
friend
Vector3Generic
<
T
>
operator
-
(
const
T
lhs
,
const
Vector3Generic
<
T
>&
rhs
)
{
return
Vector3Generic
<
T
>
(
lhs
-
rhs
.
x
,
lhs
-
rhs
.
y
,
lhs
-
rhs
.
z
);
}
// arithmetic updates
inline
Vector3Generic
<
T
>&
operator
+=
(
const
Vector3Generic
<
T
>&
rhs
)
{
x
+=
rhs
.
x
;
y
+=
rhs
.
y
;
z
+=
rhs
.
z
;
return
*
this
;
}
inline
Vector3Generic
<
T
>&
operator
+=
(
const
T
scalar
)
{
x
+=
scalar
;
y
+=
scalar
;
z
+=
scalar
;
return
*
this
;
}
inline
Vector3Generic
<
T
>&
operator
-=
(
const
Vector3Generic
<
T
>&
rhs
)
{
x
-=
rhs
.
x
;
y
-=
rhs
.
y
;
z
-=
rhs
.
z
;
return
*
this
;
}
inline
Vector3Generic
<
T
>&
operator
-=
(
const
T
scalar
)
{
x
-=
scalar
;
y
-=
scalar
;
z
-=
scalar
;
return
*
this
;
}
inline
Vector3Generic
<
T
>&
operator
*=
(
const
T
scalar
)
{
x
*=
scalar
;
y
*=
scalar
;
z
*=
scalar
;
return
*
this
;
}
inline
Vector3Generic
<
T
>&
operator
*=
(
const
Vector3Generic
<
T
>&
rhs
)
{
x
*=
rhs
.
x
;
y
*=
rhs
.
y
;
z
*=
rhs
.
z
;
return
*
this
;
}
inline
Vector3Generic
<
T
>&
operator
/=
(
const
T
scalar
)
{
assert
(
scalar
!=
T
(
0
)
);
T
inverse
=
T
(
1
)
/
scalar
;
x
*=
inverse
;
y
*=
inverse
;
z
*=
inverse
;
return
*
this
;
}
inline
Vector3Generic
<
T
>&
operator
/=
(
const
Vector3Generic
<
T
>&
rhs
)
{
x
/=
rhs
.
x
;
y
/=
rhs
.
y
;
z
/=
rhs
.
z
;
return
*
this
;
}
/** Returns the Length (magnitude) of the vector.
@warning
This operation requires a square root and is expensive in
terms of CPU operations. If you don't need to know the exact
Length (e.g. for just comparing lengths) use LengthSquared()
instead.
*/
inline
T
Length
()
const
{
return
Maths
::
Sqrt
(
x
*
x
+
y
*
y
+
z
*
z
);
}
/** Returns the square of the Length(magnitude) of the vector.
@remarks
This method is for efficiency - calculating the actual
Length of a vector requires a square root, which is expensive
in terms of the operations required. This method returns the
square of the Length of the vector, i.e. the same as the
Length but before the square root is taken. Use this if you
want to find the longest / shortest vector without incurring
the square root.
*/
inline
T
LengthSquared
()
const
{
return
x
*
x
+
y
*
y
+
z
*
z
;
}
/** Returns the Distance to another vector.
@warning
This operation requires a square root and is expensive in
terms of CPU operations. If you don't need to know the exact
Distance (e.g. for just comparing distances) use DistanceSquared()
instead.
*/
inline
T
Distance
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
return
(
*
this
-
rhs
).
Length
();
}
/** Returns the square of the Distance to another vector.
@remarks
This method is for efficiency - calculating the actual
Distance to another vector requires a square root, which is
expensive in terms of the operations required. This method
returns the square of the Distance to another vector, i.e.
the same as the Distance but before the square root is taken.
Use this if you want to find the longest / shortest Distance
without incurring the square root.
*/
inline
T
DistanceSquared
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
return
(
*
this
-
rhs
).
LengthSquared
();
}
/** Calculates the dot (scalar) product of this vector with another.
@remarks
The dot product can be used to calculate the angle between 2
vectors. If both are unit vectors, the dot product is the
cosine of the angle; otherwise the dot product must be
divided by the product of the lengths of both vectors to get
the cosine of the angle. This result can further be used to
calculate the Distance of a point from a plane.
@param
vec Vector with which to calculate the dot product (together
with this one).
@returns
A float representing the dot product value.
*/
inline
T
Dot
(
const
Vector3Generic
<
T
>&
vec
)
const
{
return
x
*
vec
.
x
+
y
*
vec
.
y
+
z
*
vec
.
z
;
}
/** Calculates the absolute dot (scalar) product of this vector with another.
@remarks
This function work similar Dot, except it use absolute value
of each component of the vector to computing.
@param
vec Vector with which to calculate the absolute dot product (together
with this one).
@returns
A T representing the absolute dot product value.
*/
inline
T
AbsDotProduct
(
const
Vector3Generic
<
T
>&
vec
)
const
{
return
Maths
::
Abs
(
x
*
vec
.
x
)
+
Maths
::
Abs
(
y
*
vec
.
y
)
+
Maths
::
Abs
(
z
*
vec
.
z
);
}
/** Normalises the vector.
@remarks
This method normalises the vector such that it's
Length / magnitude is 1. The result is called a unit vector.
@note
This function will not crash for zero-sized vectors, but there
will be no changes made to their components.
@returns The previous Length of the vector.
*/
inline
T
Normalise
()
{
T
length
=
Maths
::
Sqrt
(
x
*
x
+
y
*
y
+
z
*
z
);
T
inverseLength
=
T
(
1
)
/
length
;
// Allows this to work for zero-sized vectors, but not change anything
if
(
!
Maths
::
IsFinite
(
inverseLength
))
{
return
T
(
0
);
}
x
*=
inverseLength
;
y
*=
inverseLength
;
z
*=
inverseLength
;
return
length
;
}
/** Calculates the cross-product of 2 vectors, i.e. the vector that
lies perpendicular to them both.
@remarks
The cross-product is normally used to calculate the normal
vector of a plane, by calculating the cross-product of 2
non-equivalent vectors which lie on the plane (e.g. 2 edges
of a triangle).
@param
vec Vector which, together with this one, will be used to
calculate the cross-product.
@returns
A vector which is the result of the cross-product. This
vector will <b>NOT</b> be normalised, to maximise efficiency
- call Vector3::Normalise on the result if you wish this to
be done. As for which side the resultant vector will be on, the
returned vector will be on the side from which the arc from 'this'
to rhs is anticlockwise, e.g. UNIT_Y.Cross(UNIT_Z)
= UNIT_X, whilst UNIT_Z.Cross(UNIT_Y) = -UNIT_X.
This is because OGRE uses a right-handed coordinate system.
@par
For a clearer explanation, look a the left and the bottom edges
of your monitor's screen. Assume that the first vector is the
left edge and the second vector is the bottom edge, both of
them starting from the lower-left corner of the screen. The
resulting vector is going to be perpendicular to both of them
and will go <i>inside</i> the screen, towards the cathode tube
(assuming you're using a CRT monitor, of course).
*/
inline
Vector3Generic
<
T
>
Cross
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
return
Vector3Generic
<
T
>
(
y
*
rhs
.
z
-
z
*
rhs
.
y
,
z
*
rhs
.
x
-
x
*
rhs
.
z
,
x
*
rhs
.
y
-
y
*
rhs
.
x
);
}
/** Returns a vector at a point half way between this and the passed
in vector.
*/
inline
Vector3Generic
<
T
>
MidPoint
(
const
Vector3Generic
<
T
>&
vec
)
const
{
return
Vector3Generic
<
T
>
(
(
x
+
vec
.
x
)
*
T
(
0.5
),
(
y
+
vec
.
y
)
*
T
(
0.5
),
(
z
+
vec
.
z
)
*
T
(
0.5
)
);
}
/** Returns true if the vector's scalar components are all greater
that the ones of the vector it is compared against.
*/
inline
bool
operator
<
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
if
(
x
<
rhs
.
x
&&
y
<
rhs
.
y
&&
z
<
rhs
.
z
)
return
true
;
return
false
;
}
/** Returns true if the vector's scalar components are all smaller
that the ones of the vector it is compared against.
*/
inline
bool
operator
>
(
const
Vector3Generic
<
T
>&
rhs
)
const
{
if
(
x
>
rhs
.
x
&&
y
>
rhs
.
y
&&
z
>
rhs
.
z
)
return
true
;
return
false
;
}
/** Sets this vector's components to the minimum of its own and the
ones of the passed in vector.
@remarks
'Minimum' in this case means the combination of the lowest
value of x, y and z from both vectors. Lowest is taken just
numerically, not magnitude, so -1 < 0.
*/
inline
void
MakeFloor
(
const
Vector3Generic
<
T
>&
cmp
)
{
if
(
cmp
.
x
<
x
)
x
=
cmp
.
x
;
if
(
cmp
.
y
<
y
)
y
=
cmp
.
y
;
if
(
cmp
.
z
<
z
)
z
=
cmp
.
z
;
}
/** Sets this vector's components to the maximum of its own and the
ones of the passed in vector.
@remarks
'Maximum' in this case means the combination of the highest
value of x, y and z from both vectors. Highest is taken just
numerically, not magnitude, so 1 > -3.
*/
inline
void
MakeCeil
(
const
Vector3Generic
<
T
>&
cmp
)
{
if
(
cmp
.
x
>
x
)
x
=
cmp
.
x
;
if
(
cmp
.
y
>
y
)
y
=
cmp
.
y
;
if
(
cmp
.
z
>
z
)
z
=
cmp
.
z
;
}
/** Generates a vector perpendicular to this vector (eg an 'up' vector).
@remarks
This method will return a vector which is perpendicular to this
vector. There are an infinite number of possibilities but this
method will guarantee to generate one of them. If you need more
control you should use the Quaternion class.
*/
inline
Vector3Generic
<
T
>
Perpendicular
(
void
)
const
{
Vector3Generic
<
T
>
perp
=
Cross
(
Vector3Generic
<
T
>::
UNIT_X
);
// Check Length
if
(
perp
.
IsZeroLength
()
)
{
/* This vector is the Y axis multiplied by a scalar, so we have
to use another axis.
*/
perp
=
Cross
(
Vector3Generic
<
T
>::
UNIT_Y
);
}
perp
.
Normalise
();
return
perp
;
}
/** Gets the angle between 2 vectors.
@remarks
Vectors do not have to be unit-Length but must represent directions.
*/
inline
Radian
AngleBetween
(
const
Vector3Generic
<
T
>&
dest
)
{
T
lenProduct
=
Length
()
*
dest
.
Length
();
T
f
=
Dot
(
dest
)
/
lenProduct
;
// Did we divide by zero?
if
(
!
Maths
::
IsFinite
(
f
))
{
return
Radian
(
0
);
}
f
=
Maths
::
Clamp
(
f
,
T
(
-
1
),
T
(
1
));
return
Maths
::
ACos
(
f
);
}
/** Returns true if this vector is zero Length. */
inline
bool
IsZeroLength
(
T
thresholdAsEpsilonFactor
=
2
)
const
{
T
squaredLength
=
(
x
*
x
)
+
(
y
*
y
)
+
(
z
*
z
);
return
(
squaredLength
<=
(
thresholdAsEpsilonFactor
*
std
::
numeric_limits
<
T
>::
epsilon
()));
}
/** As Normalise, except that this vector is unaffected and the
normalised vector is returned as a copy. */
inline
Vector3Generic
<
T
>
NormalisedCopy
(
void
)
const
{
Vector3Generic
<
T
>
ret
=
*
this
;
ret
.
Normalise
();
return
ret
;
}
/** Calculates a reflection vector to the plane with the given normal .
@remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
*/
inline
Vector3Generic
<
T
>
Reflect
(
const
Vector3Generic
<
T
>&
normal
)
const
{
return
Vector3Generic
<
T
>
(
*
this
-
(
2
*
this
->
Dot
(
normal
)
*
normal
));
}
/** Returns whether this vector is within a positional tolerance
of another vector.
@param rhs The vector to compare with
@param tolerance The amount that each element of the vector may vary by
and still be considered equal
*/
inline
bool
PositionEquals
(
const
Vector3Generic
<
T
>&
rhs
,
T
tolerance
=
1e-03
)
const
{
return
Maths
::
RealEqual
(
x
,
rhs
.
x
,
tolerance
)
&&
Maths
::
RealEqual
(
y
,
rhs
.
y
,
tolerance
)
&&
Maths
::
RealEqual
(
z
,
rhs
.
z
,
tolerance
);
}
/** Returns whether this vector is within a positional tolerance
of another vector, also take scale of the vectors into account.
@param rhs The vector to compare with
@param tolerance The amount (related to the scale of vectors) that Distance
of the vector may vary by and still be considered close
*/
inline
bool
PositionCloses
(
const
Vector3Generic
<
T
>&
rhs
,
T
tolerance
=
1e-03
f
)
const
{
return
DistanceSquared
(
rhs
)
<=
(
LengthSquared
()
+
rhs
.
LengthSquared
())
*
tolerance
;
}
/** Returns whether this vector is within a directional tolerance
of another vector.
@param rhs The vector to compare with
@param tolerance The maximum angle by which the vectors may vary and
still be considered equal
@note Both vectors should be normalised.
*/
inline
bool
DirectionEquals
(
const
Vector3Generic
<
T
>&
rhs
,
const
Radian
&
tolerance
)
const
{
T
dot
=
Dot
(
rhs
);
Radian
angle
=
Maths
::
ACos
(
dot
);
return
Maths
::
Abs
(
angle
.
ValueRadians
())
<=
tolerance
.
ValueRadians
();
}
/// Check whether this vector contains valid values
inline
bool
IsNaN
()
const
{
return
Maths
::
IsNaN
(
x
)
||
Maths
::
IsNaN
(
y
)
||
Maths
::
IsNaN
(
z
);
}
// special points
static
const
Vector3Generic
<
T
>
ZERO
;
static
const
Vector3Generic
<
T
>
UNIT_X
;
static
const
Vector3Generic
<
T
>
UNIT_Y
;
static
const
Vector3Generic
<
T
>
UNIT_Z
;
static
const
Vector3Generic
<
T
>
NEGATIVE_UNIT_X
;
static
const
Vector3Generic
<
T
>
NEGATIVE_UNIT_Y
;
static
const
Vector3Generic
<
T
>
NEGATIVE_UNIT_Z
;
static
const
Vector3Generic
<
T
>
UNIT_SCALE
;
/** Function for writing to a stream.
*/
inline
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
o
,
const
Vector3Generic
<
T
>&
v
)
{
o
<<
"Vector3("
<<
v
.
x
<<
","
<<
v
.
y
<<
","
<<
v
.
z
<<
")"
;
return
o
;
}
inline
friend
std
::
istream
&
operator
>>
(
std
::
istream
&
i
,
Vector3Generic
<
T
>&
v
)
{
using
namespace
Utils
::
String
;
std
::
string
temp
;
i
>>
temp
;
if
(
!
Utils
::
String
::
VerifyConstructorAndExtractParameters
(
temp
,
"Vector3"
)
||
!
ConvertAndAssign
(
temp
,
v
.
x
,
v
.
y
,
v
.
z
))
{
v
=
Vector3Generic
<
T
>::
ZERO
;
i
.
setstate
(
std
::
ios_base
::
failbit
);
}
return
i
;
}
static
Vector3Generic
<
T
>
Random
(
Vector3Generic
<
T
>
minValue
,
Vector3Generic
<
T
>
maxValue
)
{
maxValue
=
maxValue
-
minValue
;
maxValue
.
x
*=
(
T
)
rand
()
/
(
T
)
RAND_MAX
;
maxValue
.
y
*=
(
T
)
rand
()
/
(
T
)
RAND_MAX
;
maxValue
.
z
*=
(
T
)
rand
()
/
(
T
)
RAND_MAX
;
maxValue
+=
minValue
;
return
maxValue
;
}
};
template
<
typename
T
>
const
Vector3Generic
<
T
>
Vector3Generic
<
T
>::
ZERO
(
0
,
0
,
0
);
template
<
typename
T
>
const
Vector3Generic
<
T
>
Vector3Generic
<
T
>::
UNIT_X
(
1
,
0
,
0
);
template
<
typename
T
>
const
Vector3Generic
<
T
>
Vector3Generic
<
T
>::
UNIT_Y
(
0
,
1
,
0
);
template
<
typename
T
>
const
Vector3Generic
<
T
>
Vector3Generic
<
T
>::
UNIT_Z
(
0
,
0
,
1
);
template
<
typename
T
>
const
Vector3Generic
<
T
>
Vector3Generic
<
T
>::
NEGATIVE_UNIT_X
(
-
1
,
0
,
0
);
template
<
typename
T
>
const
Vector3Generic
<
T
>
Vector3Generic
<
T
>::
NEGATIVE_UNIT_Y
(
0
,
-
1
,
0
);
template
<
typename
T
>
const
Vector3Generic
<
T
>
Vector3Generic
<
T
>::
NEGATIVE_UNIT_Z
(
0
,
0
,
-
1
);
template
<
typename
T
>
const
Vector3Generic
<
T
>
Vector3Generic
<
T
>::
UNIT_SCALE
(
1
,
1
,
1
);
typedef
Vector3Generic
<
f32
>
Vector3
;
typedef
Vector3Generic
<
f64
>
Vector3Double
;
/** @} */
/** @} */
}
#endif
File Metadata
Details
Attached
Mime Type
text/x-c++
Expires
Fri, Dec 6, 1:18 AM (19 h, 1 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
63262
Default Alt Text
Vector3.h (19 KB)
Attached To
Mode
rEE Echo 3
Attached
Detach File
Event Timeline
Log In to Comment